SOLUTION

- Q.1. (A) Four alternative answers are given for every subquestion. Choose the correct alternative and write its alphabet with subquestion number. [4]
- (1) To draw graph of 4x + 5y = 19, what will be the value of y when x = 1?
 - (a) 4 (b) 3 (c) 2 (d) -3
- (2) What is the sum of the first 10 natural numbers?
 (a) 55 (b) 20 (c) 65 (d) 11
- (3) From the following equations, which one is the quadratic equation?
 - (a) $\frac{5}{x} 3 = x^2$ (b) x(x+5) = 2(c) n-1 = 2n(d) $\frac{1}{x^2}(x+2) = x$
- (4) In the format of GSTIN there are ______ alphanumericals.
 - (a) 9 (b) 10 (c) 16 (d) 15

Ans.
$$(1) - (b)$$
, $(2) - (a)$, $(3) - (b)$, $(4) - (d)$

- Q.1. (B) Solve the following sub-questions. [4]
- (1) For simultaneous equations in variable x and y, if $D_x = 25$, $D_y = 40$, D = 5, then what is the value of x?

Solution:

· .

$$x = \frac{D_x}{D}$$

$$D_x = 25 \text{ and } D = 5 \qquad (given)$$

$$x = \frac{25}{5}$$

$$x = 5$$

(2) Find the first term and common difference for the following A.P.: 127, 135, 143, 151...

Solution: First term = a = 127

Common difference, $d = t_{n+1} - t_n$ Here, $t_1 = 127$, $t_2 = 135$, $t_3 = 143$, $t_4 = 151$ \therefore $d = t_2 - t_1 = 135 - 127 = 8$ \therefore $d = t_3 - t_2 = 143 - 135 = 8$ \therefore $d = t_4 - t_3 = 151 - 143 = 8$ \therefore Common difference = d = 8

(3) A die is rolled then write sample space 'S' and number of sample point *n*(S).

Solution:

A die is rolled.

 \therefore S = {1, 2, 3, 4, 5, 6}

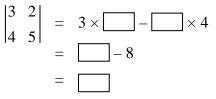
$$\therefore$$
 n(S) = 6

(4) If
$$\sum f_i d_i = 108$$
 and $\sum f_i = 100$, then find $\overline{d} = ?$

Solution:

$$\overline{\mathbf{d}} = \frac{\sum f_i d_i}{\sum f_i}$$
$$= \frac{108}{100}$$
$$\therefore \ \overline{\mathbf{d}} = 1.08$$

- Q.2. (A) Complete the following activities and rewrite it. (Any *two*) [4]
- (1) Activity:



Solution:

$$\begin{vmatrix} 3 & 2 \\ 4 & 5 \end{vmatrix} = 3 \times \boxed{5} - \boxed{2} \times 4$$
$$= \boxed{15} - 8$$
$$= \boxed{7}$$

(2) One of the roots of quadratic equation $5m^2 + 2m + k = 0$ is $-\frac{7}{5}$. Complete the following activity to find the value of k.

Activity:

$$-\frac{7}{5} \text{ is a root of quadratic equation}$$

$$5m^{2} + 2m + k = 0$$
Put $m =$ in the equation
$$5 \times \left(-\frac{7}{5}\right)^{2} + 2 \times$$
 $+ k = 0$

$$- \left(-\frac{14}{5}\right) + k = 0$$

$$k =$$

Solution:

$$-\frac{7}{5} \text{ is a root of quadratic equation}$$

$$5m^2 + 2m + k = 0$$
Put $m = \boxed{-\frac{7}{5}}$ in the equation.
$$5 \times \left(-\frac{7}{5}\right)^2 + 2 \times \boxed{\left(-\frac{7}{5}\right)} + k = 0$$

$$\boxed{\frac{49}{5}} + \left(-\frac{14}{5}\right) + k = 0$$

$$\frac{49 - 14}{5} + k = 0$$

$$\therefore \qquad \frac{35}{5} + k = 0$$
$$\therefore \qquad k = \boxed{-7}$$

(3) Complete the activity to prepare a table showing the co-ordinates which are necessary to draw a frequency polygon:

Class	18–19	19–20	20–21	
Class Mark	18.5	19.5		21.5
Frequency	4		15	19
Co–ordinates of point	$(\ , \)$	(19.5, 13)	(20.5, 15)	(21.5, 19)

Ans.

· .

Class	18–19	19–20	20–21	21–22
Class Mark	18.5	19.5	20.5	21.5
Frequency	4	13	15	19
Co–ordinates of point	(18.5, 4)	(19.5, 13)	(20.5, 15)	(21.5, 19)

- (B) Solve the following subquestions. (Any *four*) [8]
- (1) Sum of two numbers is 7 and their difference is 5. Find the numbers.
- (i) Let the two numbers be a and b.
 - \therefore According to the given conditions,

a + b = 7	(1)
a-b = 5	(2)
Adding (1) and (2),	
$\mathbf{a} + \mathbf{b} + \mathbf{a} - \mathbf{b} = 7 + 5$	
2a = 12	
$a = \frac{12}{2}$	
$u = \frac{1}{2}$	
a = 6	

Substituting a = 6 in (2),

$$6-b = 5$$

$$-b = 5-6$$

$$-b = -1$$

$$b = 1$$

 \therefore The two numbers are 2 and 6.

(2) Solve the quadratic equation by factorisation method:

 $x^2 + x - 20 = 0.$

Solution:

$$x^{2} + x - 20 = 0$$

$$\therefore x^{2} + 5x - 4x - 20 = 0$$

$$\therefore x(x + 5) - 4 (x + 5) = 0$$

$$\therefore (x + 5) (x - 4) = 0$$

$$\therefore x + 5 = 0 \text{ or } x - 4 = 0$$

$$\therefore x = -5 \text{ or } x = 4$$

$$x = -5, 4$$

(3) Find the 19th term of the following A.P:

7, 13, 19, 25,

Solution:

Here,

a = 7, t₂ = 13, t₂ = 19, d = t₂ - a = 13 - 7 = 6
t_n = a + (a - 1) d
∴ For n = 19, t₁₉ = 70 + (19 - 1)
= 7 + 18 (6)
= 7 + 108
∴
$$t_{19} = 115$$

(4) For the following experiments, write sample space 'S' and number of sample points *n*(S):

Two digit numbers are formed using digits 2, 3 and 5 without repeating a digit.

Ans: Let S be the sample space.

Then, S = {23, 25, 32, 35, 52, 53}

- \therefore n(S) = 6.
- (5) The following table shows causes of noise pollution. Find the measure of central angles for each, to draw a pie diagram:

Construction	Traffic	Aircraft take offs	Industry
10%	50%	15%	25%

(i) Central angle for construction =

 $= \frac{\text{Pollution caused by construction}}{\text{Total pollution}} \times 360^{\circ}$

$$=\frac{10\%}{100\%} \times 360^{\circ}$$

Central angle for construction = 36°

Similarly,

(ii) Central angle for traffic
$$=\frac{50\%}{100\%} \times 360^{\circ}$$

 $=180^{\circ}$

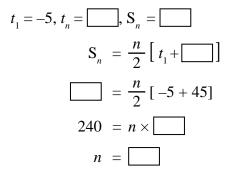
(iii) Central angle for aircraft take offs = $\frac{15\%}{100\%} \times 360^{\circ}$ = 54°

(iv) Central angle for industry
$$= \frac{25\%}{100\%} \times 360^{\circ}$$

= 90°

- Q.3. (A) Complete the following activity and rewrite it. (Any *one*) [3]
- (1) In an A.P. the first term is -5 and last term is 45. If sum of '*n*' terms in the A.P. is 120, then complete the activity to find *n*.

Activity:



Solution:

...

....

...

$$t_{1} = -5, t_{n} = \boxed{45}, S_{n} = \boxed{120}$$

$$S_{n} = \frac{n}{2} \begin{bmatrix} t_{1} + \boxed{t_{n}} \end{bmatrix}$$

$$\boxed{120} = \frac{n}{2} \begin{bmatrix} -5 + 45 \end{bmatrix}$$

$$240 = n \times \boxed{40}$$

$$n = \boxed{6}$$

(2) A card is drawn from a well shuffled pack of 52 playing cards. Complete the acitivity to find the probability of the event that the card drawn is a red card.

Activity:

'S' is the sample space.

n(S) = 52

Event A : Card drawn is a red card.

Total number of red cards = \square hearts + \square diamonds

$$n(\mathbf{A}) =$$

$$p(A) = \frac{\square}{n(S)}$$
$$p(A) = \frac{\square}{52}$$
$$p(A) = \square$$

Solution:

'S' is the sample space.

n(S) = 52

Event A : Card drawn is a red card.

Total number of red cards = 13 hearts + 13 diamonds

$$n(A) = 26$$

$$p(A) = \frac{n(A)}{n(S)}$$

$$p(A) = \frac{26}{52}$$

$$p(A) = \frac{1}{2}$$

(B) Solve the following subquestions. (Any *two*) [6]

(1) Solve the following simultaneous equations graphically:

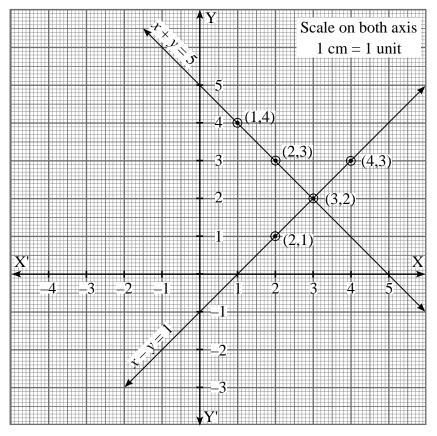
$$x + y = 5; x - y = 1.$$

Solution: x + y = 5

x	1	2	3
у	4	3	2
(<i>x</i> , <i>y</i>)	(1, 4)	(2, 3)	(3, 2)

$$x - y = 1$$

x	2	3	4
у	1	2	3
(<i>x</i> , <i>y</i>)	(2, 1)	(3, 2)	(4, 3)



Solution:

. .

· · .

$$(x, y) = (3, 2)$$

 $x = 3, y = 2$

The two lines intersect at point (3, 2)

The solution is x = 3 and y = 2

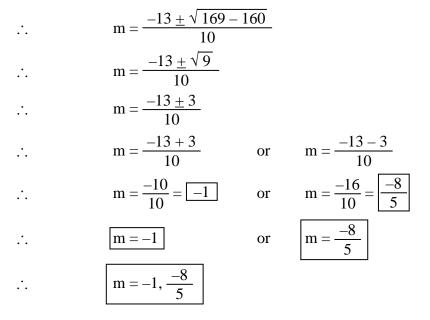
(2) Solve quadratic equation using formula method:

 $5m^2 + 13m + 8 = 0$

Comparing the above equation with $am^2 + bm + c = 0$,

a = 5, b = 13, c = 8
m =
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

m = $\frac{-13 \pm \sqrt{13^2 - 4(5)(8)}}{2(5)}$



(3) A retailer sold 2 tins of lustre paint and taxable value of each tin is ₹ 2,800. If the rate of GST is 28%, then find the amount of CGST and SGST charged in the tax invoice.

Given:

· .

· · .

· · .

Taxable value of each tin = ₹ 2800

No. of tins = 2

Rate of GST = 28%

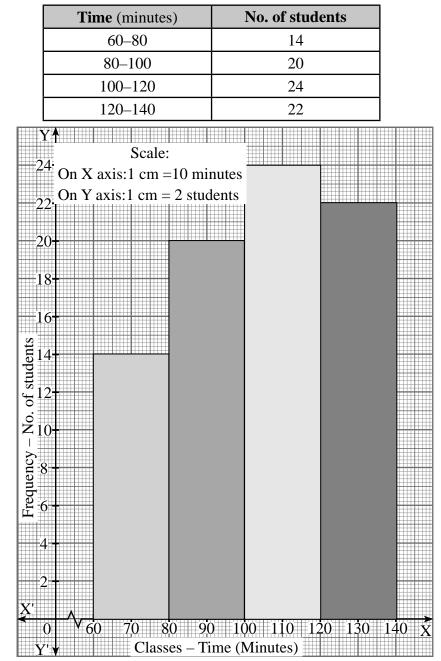
The rate of GST is divided into equal parts because rate of CGST and rate of SGST are same.

Rate of CGST =
$$\frac{1}{2} \times 28\% = 14\%$$

Now, taxable value of 2 tins = $2 \times ₹ 2800$

=₹5600

Amount of CSGT = 14% of 5600 $= \frac{14}{100} \times 5600$ $\boxed{= ₹ 784}$ Amount of SGST $\boxed{= ₹ 784}$ (4) Time allotted for the preparation of an examination by some students is shown in the table. Draw a histogram to show this information:



Q.4. Solve the following subquestions. (Any *two*)

(1) If one root of the quadratic equation $ax^2 + bx + c = 0$ is half of the other root, show that, $b^2 = \frac{9ac}{2}$.

Solution:

It is given that one root of the quadratic equation is half of the other root.

[8]

Let the two roots of the equation be α and $\frac{1}{2}\alpha$. . Sum of roots = $\frac{-b}{2}$ $\alpha + \frac{1}{2}\alpha = \frac{-b}{2}$ $\frac{2\alpha + \alpha}{2} = \frac{-b}{2}$ $\frac{3\alpha}{2} = \frac{-b}{\alpha}$ $\alpha = \frac{-2b}{3a}$(1) Product of roots = $\frac{c}{a}$ $\alpha \frac{1}{2} \alpha = \frac{c}{2}$ · · . $\frac{1}{2}\alpha^2 = \frac{c}{\alpha}$ $\alpha^2 = \frac{2c}{c}$ $\alpha = \sqrt{\frac{2c}{2}}$ From (1) and (2), · · . $\frac{-2b}{3a} = \sqrt{\frac{2c}{a}}$ On squaring both sides, $\frac{4b^2}{9a^2} = \frac{2c}{a}$ $b^2 = \frac{2(9) ca^2}{4a} = \frac{9ac}{2}$ · · .

(2) Bhujangrao invested ₹2,50,590 in shares of F.V. ₹ 10 when M.V. is ₹ 250. Rate of brokerage is 0.2% and GST is 18%, then, find:

a. the number of shares purchased,

b. the amount of brokerage paid, and

c. GST paid for the trading.

Solution:

Given: Sum invested = ₹ 2,50,590 Brokerage = 0.2%GST rate = 18%F.V. = ₹ 10 M.V. = ₹ 250 Brokerage per share = $250 \times \frac{0.2}{100}$ · · . = ₹ 0.5 GST per share on brokerage = 18% of 0.5 = ₹ 0.09· · . Cost of 1 share = MV + brokerage + GST· · . = 250 + 0.5 + 0.09· · . = ₹ 250.59 · · . No. of shares $=\frac{2,50,590}{250,59}=1000$ · · . Total brokerage = brokerage per share \times no. of shares. • .• $= 0.5 \times 1000$ Total brokerage = 500· · . Total GST = 0.09×1000 Total GST = ₹ 90 · · . (a) 1000 shares were purchased. (b) Brokerage paid was ₹ 500. (c) GST paid for the trading was \gtrless 90.

(3) The following table shows frequency distribution of number of trees planted by students in the school:

No. of Trees Planted	No. of Students
0–10	30
10–20	70
20–30	100
30–40	70
40–50	40

Find the mode of trees planted.

Solution:

· .

No. of Trees Planted	No. of Students
0–10	30
10–20	$70 \longrightarrow f_0$
20–30	$100 \longrightarrow f_1$
30–40	$70 \longrightarrow f_2$
40–50	40

The maximum number of the students is in the class 20–30. The modal class is 20–30.

Mode = L +
$$\left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$$

L = 20
H = 10
 $f_0 = 70$
 $f_1 = 100$
 $f_2 = 70$
Mode = 20 + $\left[\frac{100 - 70}{2(100) - 70 - 70}\right] \times 10$
= 20 + $\left[\frac{30}{200 - 140}\right] \times 10$
= 20 + $\left[\frac{30}{60}\right] \times 10$
Mode = 20 + $\frac{1}{2}(10)$

= 20 + 5

- \therefore Mode = 25 trees.
- \therefore The mode is 25 trees.
- Q.5. Solve the following subquestions. (Any one)
- (1) Six faces of a die are as shown below:

If the die is rolled once, find the probability of event 'M' that 'English vowel appears on upper face'.

Solution:

Let S be the sample space.

 $\therefore S = \{A, B, C, D, E, O\}$ $\therefore n(S) = 6$ Event M = English vowel appears on upper face. $\therefore M = \{A, E, O\}$ $\therefore n(M) = 3$ $\therefore P(M) = \frac{n(M)}{n(S)}$ $\therefore P(M) = \frac{1}{2}$ The shall be seen to be solved appears on upper face. 1

 \therefore The probability of a vowel appearing on the upper face is $\frac{1}{2}$.

(2) Construct any one linear equation in two variables. Obtain another equation by interchanging only coeffcients of variables. Find the value of the variables.

Solution:

A linear equation in two variables a and b is

$$2a + 3b = 8$$
(1)

By interchanging the coefficients of variables, we get

$$3a + 2b = 8$$
 ...(2)

[3]

Adding (1) and (2),

$$2a + 3b + 3a + 2b = 8 + 8$$

$$\therefore 5a + 5b = 16$$

$$\therefore 5(a + b) = 16$$

$$\therefore a + b = \frac{16}{5} \dots(3)$$

Substracting (2) from (1),

$$2a + 3b - (3a + 2b) = 8 - 8$$

$$\therefore \qquad 2a + 3b - 3a - 2b = 0$$

$$\therefore \qquad -a + b = 0$$

$$\therefore \qquad a - b = 0$$

$$\therefore \qquad a = b \qquad \dots(4)$$

From (3) and (4),

$$a + a = \frac{16}{5}$$

$$\therefore \qquad 2a = \frac{16}{5}$$

$$\therefore \qquad a = \frac{16}{5 \times 2}$$

$$\therefore \qquad a = \frac{8}{5}$$

$$\therefore \qquad a = b \qquad \dots(\text{from (4)})$$

$$\therefore \qquad b = 1.6$$

$$a = b = 1.6$$